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Let the equation 

L, (y) Ez UIJ (t) y(“) + a1 (1) p-l) + . . . + a n (t) y = f(t) + c (1) I’ (t) (1 ! 

with initial conditions 

y (0) = y’ (0) = . . . y-l) (0) = f (0) = 0 Pi 

describe a tracking system whose input is supplied not only with a con- 
trol function f(t) but also with its derivative f’(t), amplified by a 
variable amplification factor c( t). for the purpose of improving its per- 
formance. It is assumed that the function f(t) arriving at the input of 
the tracking system has been filtered free of high-frequency noise and 
interference. Nothing is known about f(t) except that 

I f’ (t) I < 172 (3) 

and f’(t) has a finite number of points of discontinuity in a finite 

interval of time. 

The function c(t) must satisfy the constraint 

I c (G I d Jf (4) 

The error signal y( t) - f(t) will be denoted by 6( t , f(T), c(T)). 

Let us assume that at a fixed instant of time T the modulus of the 
error signal must not exceed a given value for any value of f’(t) satis- 
fying (3). that is: 

I f’ (t) I <m, 2 E lo, Tl (5) 

and let the inequality 
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iyf s;p J 6 (T, f (tf, c (t)) ) = A” < A 

I c (2) I4 M, I f’ (1) I < m, 2 E [O, Tl (6) 

be satisfied. 

We shall now formulate the problem. In the set of integrable functions 

c(t) satisfying the conditions (4) and (5), required to find the function 

cmin( t) for which 

inf sup 16,' (T, f(t), c(t)) ( 
c f 

I f' !t) I< m, t E [U, T1 

will be true. 

At time T the values of y( 7’) and f( ?J agree to the best first-order 

approximation possible for the given conditions for any f(t) satisfying 

(3). 

The problem considered here is directly related to Bulgakov’s method 

of accumulated perturbations [II, since all that is known about f( tf is 

the condition (3). 

It should be noted that the method of supplying a linear combination 

of the control function f(t) and its derivative is fairly widespread in 

practice. 

In a number of cases the control function may be differentiated 

exactly in practice, for example, when f'(t) is obtained by means of a 

tachometer. In other cases, for example, in the case of differentiation 

by means of RC networks, the error in ‘finding the derivative consists in 

the fact that instead of the function f’(t) one obtains the function 

s(t), which is a solution of the equation 

For sufficiently small values of the time constant I*, .S( t) = f’(t). 

In the present note it is assumed that the differentiation is exact. How- 

ever, the statement of the problem remains meaningful even for the case 

when S( t) is supplied to the input of the system instead of f'( t). 

We shall assume in what follows that in the interval [O. TJ, where 

?‘e > T, all coefficients ai( t) of Equation (1) are functions which have 

n- i continuous derivatives and aef t) does not vanish in 10, Tel. These 

conditions facilitate the calculation of certain functions introduced 

below. Representing f(t) in the form 
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f (tj = \ f’ (t) dt 

0 

and changing the order of integration in the resulting repeated integral, 

taking Equation (2) into account, the error signal 6(T, f, c) may be re- 

presented in the form 

Here y,(t). y2(t), . . . . y,(t) form a fundamental system of solutions 

of the homogeneous equation corresponding to Squation (l), W(T) is the 

Wronskian of this system, and Wr(-r) is the cofactor of the element of 

the last row and rth column of the \Vronskian. Therefore 

K(T,T)=O, K. (T, T) = - 1 

Let us recall that the functions Zr(~) = W,(T)/Q(T) W(T) form a funda- 

mental system of solutions of the equation 

M,(Z) G (- l)“(aoZ)(“) + (- l)n-l(uJJ(“-‘) + . . . - (a,_,Z)‘$ a$ = 0 (7) 

Here M,, is the operator conjugate to Ln. 

Since c(T) and f’(T) are integrable, K( T, T), K,,( T, T), and their de- 

rivatives with respect to T are continuous in T and T and K(T, T) = 0, 

K,(T, T) = - 1, it follows that 

‘1’ 

b,.’ (T, f. cl = s [Ko’(T, ) T $c(~)K'(T,~)]f'(t)dr- f'(T) 
0 

if f’(T) is continuous in T. If f’(T) has a discontinuity at T, then for 

the derivatives from left and right, respectively, the second term of 

tbe formula is equal to f’(T_o) and f’(T+,), respectively, The deriva- 

tives of K,(T, T) and K(T, T) are calculated with respect to the argu- 

ment T. Since f’(t) is not known in advance and merely satisfies the con- 

dition (3). it follows that 

T 

sl;p j 6 (T, j, c) 1 == m s 1 KO (T, T) + C(T) K (T, ~1 I dr 
0 
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T 

sup 1 $'(T, f,c)l = nt 
f s 

IK,'(T,~)+c(z)K'(T,T)IdT+m 

0 

Therefore 

T 

inf sup 61 T’ (T, f, c) 1, 
c f 

i:f m 5 1 Ko’ (T, t) _1- c (t) K’ (T, t) 
0 

I dr 

‘) : 

will be true for the same function cmin(r). 

It is shown in [21 that (6) is true for the function ~‘(1 

Ko V’, T) co lT) = - K(T,) 

Ko (T, r) 
co (t) = - M sign K (T, %I 

We set 

where 

Ko (T, z) + c(z) K (T, z) = iv (z) + cp (z) K (Q 

K,,’ (T, z) + c (z) K’ (T, z) = R (‘t) + cp (r) G (r) 

(8) 

(9) 

iv (z) - Ko (T, z) + co (z) K (T, v), R (z) = K,’ (T, z) + co (z) K’ (T, z) 

cp (z) = c (z) - co (0 K(z) = K (T, z), G (t) = K’ (T, z) 
(W 

a (r) = - M -co (T).; $ q~ (z) < M - co (t) = b (c) (21) 

The above problem is thus equivalent to the following: 

On the set D of functions T(T) satisfying (11) and the condition 

Q(T) = m f I N (~1 + cp CT) K (~1 I dt < ,JI 
0 

required to find the function T,;“(T) for which 

T 

’ inf E (cp) = inf m 
9 ‘p s 

1 R (t) + q(z) C (z) 1 df 

0 

We set 

R CT) 
(u”(T)=n(T) for -~(z)<a(t), cpO (5) = b(t) 

R (‘c) _ 
for - G (r) __ 3 k (t) 

A= (r) 
9,” (r) = - G (r) 

R (4 
for n (r) < - G (t) <k 0) 

(12) 

(13) 

Let o(y) be a subset of [O, ~1 such that if T E o(y), then 
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G W) 
-XT-@--* y E [B-, By, 

G (~1 B- = i:f K , B+ = ““t’? 

We now consider the function ~(r, y), dependent on the parameter y, 

and the function 

Let us non note that for any arbitrary 

G P) --- 
K(z) -d 

can have only a finite number of zeros in 

constant d the equation 

?a 

the interval [O, ~1; In 

n 

G W = 2 yp’ P’) 2, (6 K WI= x yr PI z,..(t) 
r=l r----l 

2’ (4 = C (z) - dK (r) = i [?I,’ (T) - dy,. (T)] 2, (T) 
r-1 

fn the last equality at least one of the coefficients y,‘( 7) - &y,(T) 

fact 

is different from zero, since otherwise the Wronskian would be equal to 
zero. Therefore. f(v) is a nontrivial solution of Equations (7). But 
this solution can have only a finite number of zeros in the interval 

[O. T]. The function (D(y) is continuous and decreases monotonically as y 
varies from B- to B+. 

Indeed, if yg 

I +JV, Y$! . 

> y1 then a(~~) C cr(yl). Therefore 1~0. yl) 1 > 

It follows from (8) to (11) that if N(-r)yl(‘r, y)K(‘r) # 0, then 

These equations may be obtained as follows: We have 

sign N = sign Ko, 
KO co -= - Al sip -7 , k Ih;,I>MIKI, Q = cp” 

and therefore 

KS 
-M<MsignT--9 <M 
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Since 

it follows that 

Moreover, sign qIyX = sfgn $K = sign ii0 = sign N, since 

KU 
-2M<qY<O if sign7 =---1, 0 < cp” < 2M if sign+-I 

Therefore @(yl) 3 @(y,). The continuity of O(y) follows from the ahave 

noted property of G(t)fX(-r). Two cases are possible: either @(B-) > A or 
UJ(B-, < A. 

In the first case 

where y. is the smallest root of the equation 

CR (IJ) == A 

Equation (15) has at least one root, since 

T 
(D(s+)=m * 

1\ 
lN(T)~&=A"<A 

n 

Pi) 

(15) 

It follows from the above that y(-r, yi) I y(v, yj) if yi and yj satis- 

fY (151. 

In the second case 

Qnlin (T) :- \1’ (7. u-) = (0’ (51 

It is evident that V’(T) and q”(W belong to the set D. 

We shall prove Equntlon (14). Let ~(7) be an arbitrary function be- 

longlug to D. 

Noting that for any T belonging to WY,,) we have 

1~~+~0~~~I~+~j--l~~+~~/=~~t9j-_~/-~I~~I>I~~l--191 
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it follows that 

It is thus shown that if E(Q) is attained on Q*(7), that is, Equation 
(14) is valid. Formula (16) is proved in a similar manner. 

Let us consider the computational side of the above problem. The de- 

termination of the function K(T, r) reduces to the calculation of the 
fundamental systems of equations yl(t), yz( t), . . . . y,(t) and Z,(t), 

ZgfO, . ..I Z,f t). The methods of finding these solutions by means of 

high-speed digital computers or analog computers are well known. Tbere- 
after the functions N(T), R(s), gr’(v) can easily be found. Since o(y) is 
a monotonic continuous function, a suitable method for solving Equations 
(15) to a predetermined degree of accuracy is the well-known numerical 
method of successive approximations called the rule of false position. 

From the above property of the function G(-r)/K(r) it follows that for 
any given y the set o(y) consists of a finite number of intervals. The 
boundaries of these intervals are the roots of the equation 

G CT) - _- 
K(T) - y 

Finding the roots of this equation is equivalent to finding the zeros 
of the solution 
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of Equations (7), which may be done by means of digital or analog com- 
puters. The calculation of the value of the function B(y) after finding 
the structure of the set o(y) reduces to the calculation of a finite 
number of intervals. 

To illustrate the method of finding the function o(y), we shall con- 
sider an example. 

Let the equation 

Y” -i- Y = f (4 -I- c (4 f’ (i)t y (0)=-y’ (Oj == f (Oj = 0, ] /’ (1: j < vt; 1 c (t) 1 < M 

be given. 

As is known, for this equation K(T, 7) = sin(7’ - t). For simplicity, 
we set 7’ = 2x4 where n is a positive 

] CO: r/GM, co = - M cot t if ] cot zl),M 

Using 

cos%+Msinz, R (2) = - SIII t .- M eosz (a zr>M) 
N(t)=-cost-Msinv, H (t) = -sinr+Mcoss ! cot T < - X) 

a (t) = --M+ cot r, b (z) = M $- cot z (I cot vl64 
a (2) = 0, = 

( cot t < - M) 

G WI 
----‘cot T, 

R @I sin r + ilf co5 z 

K W --G(z)= cos T 
=tanz+nr ( cot t ,, M) 

f? (T) sin z - M cos ‘t 
-G(t)= 

=tan+r-M 
COJ r 

(cot IT<--, 

Consequently, T E o(y) if - cot T 2 y. Let -ry be a value of cot -V-Y) 

belonging to [O, xl. Then a(y) consists of the intervals [ty, ~1, [T~ + 
71 + 27r], . . . , Ty + a(2n - l), 2*n). We assume for the sake of definite- 

ness that M > 1. Then from the determination of cp”( t) it follows that 
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cp” (7) r= tan-c + M (cot T>M) 

p”(t) ==tanT-i cot c (M > I fco(’ t I> M-1) 

cp” (7) == M -t cm, t (M-l > cot T > 0) 

fp” (7) = - M + C& t (- M-l< cot t < 

If(t) =tuT-- 

In the interval [O, ITI 

I# (T, y) = cp’ (7.) if T E [‘C,,, n], qp(z, Y)==O if 7E(O, T,; 

Let 

cot&' =~: M, 

Then for y Q - M 

COG 7) (- sin T) Id% + 

1 
42-M+-i-‘n 

Performing similar calculations, we find that 

I/1.+ ML+2--MM-+ln 

(--M dy <-M-l) 

1/l+ M”$2-M- 

(-- M-l <y<O) 
-_- 

Q (y) = 4nnm vl 1/l+M2+M -==7===_ 
1/l+ M”--M (O<Y<M-~) 

(M-l <Y< M) 
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We note that 
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